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Abstract

Pastor and Veronesi (2009) provide a rational explanation for stock price bubbles ob-
served during technological revolutions. We argue that the proposed mechanism, based
on sharply rising systematic risk as the new technology nears wider adoption, is un-
likely to explain bubbles. We show that this mechanism is only present in an illustrative
model with the simplifying assumption that a one-time all-or-nothing adoption deci-
sion for the new technology occurs at an exogenously fixed date. In contrast, there is
no stock price bubble in the baseline calibration of the more realistic model that allows
for optimal adoption of the technology at any time. More generally, we argue that the
bubble pattern is not a natural feature of the more realistic model. We also argue that
the behavior of earnings and stock prices in the DotCom bubble, as well as the current
AT stock boom, provide no evidence of the necessary mechanism. Our results suggest
that the bursting of an Al bubble is unlikely to arise from increased systematic risk

accompanying further positive news about Al technology.
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1 Introduction

Péstor and Veronesi (2009) (hereafter PV) provide a rational explanation for bubble patterns
observed in the stock prices of firms with transformative technologies. Ex post, technological
revolutions are characterized by a long series of unexpectedly positive productivity shocks
leading to the technology’s broad adoption in the economy. These shocks lead to an increase
in expected cash-flow that increases stock prices, but they also increase the probability of
wider adoption, which leads to an increase in systematic risk that decreases stock prices.
Early in the revolution, the probability of adoption is insignificant, so the first channel
dominates and prices rise. Later in the revolution, when the probability of adoption becomes
high, the second effect dominates and prices fall, creating the characteristic bubble pattern.

PV has been highly influential, and its predictions are often at the center of recent dis-
cussions regarding a potential stock price bubble for companies involved in the development
of generative artificial intelligence (AI).[] In particular, the PV mechanism suggests that fur-
ther upward revisions in beliefs regarding AI’s potential to revolutionize the economy may
generate a sharp decline in Al stock prices.

In this paper, we argue that this outcome is unlikely to occur. Our first argument
is theoretical. There are two versions of the model in PV: an illustrative version under
the simplifying assumption that the representative agent makes a one-time all-or-nothing
decision whether to adopt the new technology at an exogenously preset date, and a more
realistic version where an endogenous adoption time is chosen optimally. We show that in
the baseline calibrations of PV, the ex post bubble is only present in the illustrative case.
While the endogenous adoption time model generates a bubble pattern in market-to-book
(M/B) ratios, we show that this is primarily due to expected mean-reversion in the M/B
ratio. In the baseline calibration of the more realistic model, there is no period of negative

average returns, and hence no price bubble in a typical technological revolution.

'For example, see the article “This is how the AI stock boom plays out”.
https://www.bloomberg.com/opinion/articles/2025-10-28 /this-is-how-the-ai-stock-boom-plays-out



We also argue that the bubble highlighted in PV is a result of the simplifying assumption
of an exogenously specified adoption date, rather than a natural feature of a more real-
istic model. To do this, we derive a simple approximation that links the exogenous and
endogenous specifications by expressing prices as a function of cash-flow expectations and a
systematic risk term that scales linearly with the expected time until adoption. Using this
approximation, we demonstrate that a price crash requires a region in which small cash-flow
shocks generate large reductions in the expected time remaining until the new technology is
adopted.

The assumption of an all-or-nothing decision at a preset time creates exactly such a
region. Approaching the preset time, if beliefs about the technology’s improvements to
productivity are near the level required for adoption, small productivity shocks can sharply
increase adoption probabilities. The expected adoption time then jumps from very far in the
future (effectively the terminal time 7" if the technology is not adopted) to the immediate
present. The resulting increase in systematic risk raises discount rates enough to overwhelm
the positive cash-flow effects of the shock, generating large negative returns.

In contrast, when adoption timing is endogenous, adoption occurs when productivity
crosses a continuous boundary. This boundary is generally downward sloping in time due to
the gradual learning about productivity improvements that reduces both the uncertainty of
the new technology’s productivity and the value of the continuation option to keep learning.
This implies that productivity shocks translate into smooth, incremental changes in expected
adoption times, even far from the boundary. As a result, the increase in systematic risk is
spread evenly over the course of the revolution, preventing it from dominating cash-flow
effects and thereby eliminating any declines in prices.

We believe that this core feature of a learning model, the reduction of uncertainty as
time passes, will make it very difficult to generate a bubble pattern in the endogenous case
with realistic parameters. However, we note that even the endogenous adoption time model

can be parameterized to generate a bubble, notably with an up-front adoption cost that is



much higher than in the baseline Calibration.ﬂ We therefore present a second, empirical,
examination of the mechanism. We argue that the empirical signature of the discount-rate
mechanism in the PV model is that a series of positive cash-flow shocks generate realized
returns that are first increasing, and then decreasing, as the impact of these shocks on the
discount rate is changing over time. In other words, conditional on a series of positive
cash-flow shocks strong enough to create a revolution, the latter stage of the revolution is
characterized by expected cash-flows which are continuing to rise while stock prices begin to
fall.

To empirically examine this mechanism, we construct measures of forecasted aggregate
earnings for both NASDAQ companies in the late 1990s and early 2000s around the DotCom
Bubble, and in the more recent boom in Al stocks. We find that the boom and bust period of
the DotCom Bubble corresponded to rising, and then falling, expected cash-flows. Likewise in
the current AI Boom, stock prices are closely tracking forecasts of future earnings despite the
fact that adoption probabilities are currently likely to be high, though extremely uncertain,
which is precisely the time when the discount-rate mechanism should be most active. In
short, we do not find positive earnings shocks to be paired with price falls.

Taken together, our theoretical and empirical arguments do not suggest that observed
bubbles are inherently evidence of irrational investOrsE| Our argument here is simply that
increasing systematic risk is unlikely to create a sudden drop in stock prices for new tech-
nologies. In the context of Al technologies, an increase in discount rates from positive news

about improvements in Al productivity is unlikely to cause a crash.

2This is an artifact of the finite-horizon model specification. See Section [3|for a discussion.

3For instance, Péstor and Veronesi (2006]) show that a highly uncertain new technology should have high
valuations through a simple Gordon Growth argument: %1‘3[17] < FE [ﬁ] when g is uncertain. This means
that, for the median uncertain technology, the return will be negative (i.e. if uncertainty about g resolves

to Efg).



2 Related Literature

While the paper most closely related is|Pastor and Veronesi| (2009), the analysis also relates
to Pastor and Veronesi| (2006), who emphasize that uncertainty about future growth rates
can produce high valuations even in a fully rational setting because valuation ratios are
convex in growth expectations.

More broadly, our work connects to the literature on bubbles driven by disagreement,
speculation, or investor sentiment (e.g. Harrison and Kreps (1978), Scheinkman and Xiong
(2003)), and Barberis et al. (1998)) and to more recent papers that study technological
innovation and asset prices (e.g|Garleanu et al.| (2012), Kung and Schmid| (2015), and |[Kogan
et al.| (2020))). Finally, our empirical discussion relates to evidence on the DotCom Bubble

(e.g. Ofek and Richardson| (2003) and |Greenwood and Nagel| (2009)).

3 Model predictions and mechanisms in Pastor and
Veronesi (2009)

We first briefly review the model of Péastor and Veronesi (2009)E] The economy has a finite
horizon [0, 7] with a representative agent who has power utility over terminal wealth Wr

with risk aversion v > 1.

Wy

u(Wr)

The agent is endowed with initial capital By, which produces output Y = p;B;. This
output is used to grow the capital stock so that dB; = Y;d; = p;Byd;. Shocks to productivity
therefore do not impact the current level of capital, but they do impact its future growth.
The capital stock is fully consumed at time T" so that By = Wr.

PV assume that the value of new-economy firms are infinitesimal in size relative to the old

4For details, we refer the reader to [Pastor and Veronesi (2009) and its technical appendix.



economy. Hence, the new economy only impacts terminal wealth through its impact on the
productivity process of the old economy p;, and old economy capital By entirely determines
terminal wealth.

Technology and Productivity. Initially, only the old technology is available. At time
t*, a new technology becomes available. Old economy productivity p; is a mean-reverting
process whose mean may be changed by “adoption” of a new technology at a time t** > t.
This adoption increases the long-run mean of the productivity process by an amount 1, so

that

dpy = ¢(p — pr)dt + 0dZyy, 0 <t <t™,

dps = ¢(p+ 1 — pr)dt + odZg,, 7 <t <T

Here ¢ is the speed of mean reversion, ¢ is the exposure to an old-economy productivity
shock generated by Brownian increments dZ,;. The new technology’s productivity gain ¢
is unobservable. When the new technology appears at t*, v is drawn from N(0,0%) with
known variance. After t*, the new-economy capital stock (BY) and productivity (p¥) are

observable and evolve according to

dBY = pN BN dt

dpiv = ¢(ﬁ + 1 — piv)dt + O—N,OdZ(],t + O'N,ldzl,t

Here Z,; is a Brownian motion uncorrelated with Zy;, and oxo and oy are the new
economy’s productivity loadings on the two shocks. By observing pV and p;, the agent
learns about . The posterior distribution is ¢|F; ~ N (1/;15, 62), where the posterior mean
’l/AJt, conditional on the filtration F; generated by the observable productivity levels, is a

martingale and the posterior variance 62 declines deterministically over time with learning.



Practically, unexpected shocks to new economy productivity lead to upward revisions in
z/zt. Following PV, we consider these orthogonalized unanticipated shocks to new economy
productivity (controlling for shocks to old economy productivity) as le,t.

Adoption Decision. The agent chooses to adopt the new technology if doing so in-
1—v

Wl/f } In the exogenous adoption time scenario, the agent
v

creases expected utility E; [
decides at a pre-specified time t** whether to adopt the new technology on a large scale.

Adoption occurs if and only if the posterior mean exceeds a threshold:

o =m) Loy ayeen. 0

Vi 2V = — T T

where 7 = T — t**, k is a proportional conversion cost which decreases current capital By,
and Ay(7) =7 — (1 —e797)/¢. This ¥ is the level of subjective belief about the productivity
at t** for which the agent is indifferent, in terms of expected terminal utility, between the
adoption and no-adoption productivity process for the old economy.

In the endogenous adoption time scenario, adoption occurs optimally at the time when
adoption maximizes the agent’s expected utility. As PV show, this problem is akin to
the optimal exercise of an American option, whereby the agent considers the benefit from
adoption relative to the continuation benefit from waiting to adopt. Here there is a threshold
¥(t) which now depends on time ¢ (only ¢ since &, is deterministic in time) where the agent
adopts if g@t > 1)(t). This threshold can be written as the sum of two terms of the static
adoption threshold for a given time ¢, and a continuation value, so that

+ 5 (v = DA(7)67 + x(t)- (2)

log(l —x) , 1
Ay(T) 2
Here x(t) > 0 is the continuation option value of waiting to adopt. A closed form for this
term is not available and the endogenous adoption boundary is therefore obtained through
the numerical solution of the PDEs laid out in PV. We note that x(f) = 0 when ¢t = T

or 62 = 0, so that the value of x(t) is generally falling through time as the terminal time



approaches, and as more is learned about productivity.

Asset Pricing. As PV show, the state price density is uniquely given by

1 _
e = X]Et[WT ",

where A is the Lagrange multiplier from the representative agent’s utility maximization
problem. The PV model also assumes that there is a money-market account earning a risk-
free rate. Since the model has no intermediate consumption, this is a free parameter and
may be normalized to zero. The market values of the old and new economy stocks, denoted

by M; and M} respectively, are given by the standard pricing formulas:

M, = E, V—TBT] and MY =E, {W—TB]TV} ,
Tt Tt

where Br and BY are the terminal book values (the only cash flows in the model). PV
consider market-to-book (M/B) ratios M;/B; and M} /BY to normalize the market values.
Despite the simplicity of the setup, solving the model is quite involved. Details for the
solution can be found in PV and its technical appendix.

Stock price bubbles in the model. We solve the model using the replication code
provided by PV on the American Economic Review website under the baseline calibration.
We are most interested in how the characteristic bubble pattern in new-economy stock prices,
conditional on technological adoption, differs across the exogenous and endogenous adoption
time models. Figure 1 plots the relevant results. We note that this figure is a replication
of some of the results in Figures 3 and 4 in PV which present results for the exogenous
adoption time case, and Figure 6 which presents results for the endogenous adoption time
case. Following PV, here we consider adoptions in the endogenous case that occur within
one year of the exogenous threshold E[t**] = 8.

The left-hand panels represent the exogenous adoption time case, and the right-hand

panels represent the endogenous adoption time case. As Panels A and B show, a technology



adoption is characterized, ex post, by a long string of unexpectedly positive productivity
shocks. These raise the subjective belief zﬂt enough that it becomes optimal to adopt. This
in turn has an impact on stock prices conditional on observing a revolution.

As Panels C and D show, in both the exogenous and endogenous cases, the M /B ratio
of the new economy initially rises and falls, generating a characteristic bubble pattern. The
intuition is that early in the revolution, adoption probability is low, so the increased cash-flow
effect leads to positive returns and increasing valuations. Later in the revolution, those same
positive cash-flow shocks also increase the discount rate through the increased probability of
adoption, which overwhelms the cash-flow effect and leads to falling prices. This intuition
is precisely the cause of the bubble in the exogenous case. Panel E plots cumulative returns
to the new economy in this case, which inherit the bubble pattern of M/B.

For the endogenous adoption time case, the pattern is very different. As Panel F shows,
cumulative returns rise steadily throughout the revolution in the baseline calibration, with
no bubble in stock prices. This may seem surprising given that shocks affect book values
only through their drift, so that any unexpected movement in M/B is immediately reflected

MY . . . . .
=i and B)Y have their own drifts, and over this period, B} rises
t

in returns. However, both
due to high productivity faster than ]\;—fvv falls. Moreover, the decline in ]\;_EVV reflects expected
mean reversion rather than newly arriving shocks. Conditional on a sequence of very positive
productivity shocks, productivity is well above p, so expected productivity growth and M/B
are anticipated to decline. Panels G and H make this distinction explicit by decomposing
changes in M/B into drift and shock components. In the exogenous case, contemporaneous
shocks drive the decline in M/B and generate the bubble pattern, while in the endogenous
case the downward slope reflects expected mean reversion.

The takeaway of Figure 1 is that, for the baseline calibration, there is no stock price
bubble in the endogenous adoption time case. We now turn to a discussion of why no bubble
arises. We will argue that the difference is not due to a particular calibration, but instead

due to a fundamental difference in discount-rate dynamics across the two models.



(A) Exogenous: cumulative cle (B) Endogenous: cumulative cfEl

77 — technological revolution 101 — technological revolution
6 no technological revolution no technological revolution
8
54
g 44 6
=1
©
S 349
E 2
=
g,
14 21
04 0
T T T T T T T T T T
(C) Exogenous: MV/B (D) Endogenous: M"/B
4.5
5.0 4
401 4.5
3.5 2.0
9
=
= 3.0 3.5 1
254 3.0 4
2.5
2.0
2.0 1
T T T T T T T T T T
(E) Exogenous: Cumulative Return (New Economy Stock) (F) Endogenous: Cumulative Return (New Economy Stock)
7 25
6
20
€517
E
= 15
o
2
s4
=
39 10 4
£
3 21
5
14
07 0
T T T T T T T T T T
(G) Exogenous Time Revolutions: Cumulative Alog(M/B)" (H) Endogenous Time Revolutions: Cumulative Alog(M/B)"
0.6 R
— total 131 — fotal R B
0.4 1 drift P
. 1079 ... shock -
& 0.2
g 0.5 1
S 001 /,_/———\
2
El
] 0.0
g 02
=1
S —04 0.5
2 .
=
U _p6-
1.0
0.8
-1.5
T T T T T T T T T T
2 a 6 8 10 2 a 6 8 10
Years Years

Figure 1: New economy bubbles in baseline calibration

The figure shows simulated time series for the new economy from the baseline calibration of
the model in [Pastor and Veronesi| (2009): v =4, ¢ = 0.3551, p = 0.1217, p; = 0, o5 = 0.04,
09 = opp = 0p1 = 0.07, and K = 0.1. The left-hand side shows results from the model
where adoption decisions occur at an exogenous time t** = 8, while the right-hand side
shows the model where endogenous adoption time is chosen optimally. Panels A to F show
the time-series average conditional on adoption (blue line) and on no adoption (orange line).
Following PV in the endogenous time case we focus on adoptions that occur at t** € [7,9].
Panels A and B show the series of cumulative unexpected productivity shocks to the new
economy. Panels C and D show the M/B ratio for the new economy. Panels E and F
show the cumulative returns to the new economy stock. Panels G and H decompose the log
of adoption M/B ratios in Panels C and D into unexpected innovations and conditionally
expected drift. 10



3.1 Discount-rate effects in technological adoptions

For the purpose of understanding the model, and in particular the relation between the
exogenous and endogenous adoption models, we introduce a simple approximation to help
understand the mechanism.

Extreme cases: Never Adopt vs. Immediately Adopt Consider the new economy

NA

N,
at any time ¢, and define MtBN (“NA” for "Never Adopt”) as the M/B ratio of the new

economy at time t, given a level of 1[% and pY¥ and under the assumption that adoption can

MtN’IA “TA” i | di
L ( or ”Immedi-
t

never occur, regardless of the subjective belief. Likewise define
ately Adopt”) as the value of the stock if adoption were to occur immediately, regardless of

its optimality, given a level of zﬂt and p. These values are given by

MN,NA _ R
D Co()+ALT)p +As(T) it 5 Aa(7)?67
BN
t

pNIA ) A
2 Co(n)+A(T)pY + A (1)t 5 Aa () (1-27)57
BY

Here 7 = T'—t, A;(1) = 7— As(7) , and Cj is a constant that is defined in PV | Note that
the only difference is in the 62 term in the exponent. The immediately-adopt scenario has an
additional —yA,(7)%67 in the exponent, representing the lower price due to the systematic
risk incurred when the new technology is adopted. Since v > 1, Ay(7) > 0 and B} is the
same in both scenarios, we have that M}, < MY ,. Note that this difference is decreasing
in t. As time passes, subjective risk falls, and time until the terminal cash flow falls as well.
Equality occurs at time 7" when adoption no longer has any effect on the new economy.
Therefore, the “never adopt” case is equivalent to adopting at time 7.

Also note that immediate adoption, from a discount-rate perspective, is the worst possible

®This ratio is an endogenous function of the time-t state variables: (pl¥, p;, 1/}t, and t). We suppress this
in the notation for simplicity of exposition throughout this section, and simply use the subscript ¢ to denote
a value conditional on the time-¢ state of the model.

6These equations are of the same form given in Corollary 2 in PV, which considers valuations just above
and below the optimal threshold at time t**, but are generalized to any time ¢ € [t*,t**].

11



case for systematic risk. If you wait to adopt, there will be less time remaining for shocks
to the new economy to impact expectations about the old economy. Likewise, committing
to never adopt is the best possible case for systematic risk. Since the adoption decision does
not impact the cash-flow of the new economy, the true market value M under uncertain
adoption satisfies M4 < MN < MNNA

Approximating Market Value in the PV model. Now consider the case where
adoption is uncertain and may occur at some unknown time t**. Let E,[t**] denote the

expected adoption time. In the exogenous case, this is:
Ei[t™] = pt™ 4 (1 — p)T,

where p; is the probability at time ¢ that adoption will occur at the pre-specified t** (i.e. the
posterior probability at time ¢t that @/AJ[** > 4)). If the adoption does not occur at £**, it will
never occur, which is equivalent to adopting at time 7', when the decision no longer impacts
new-economy value. In the endogenous case, E;[t**] is the expected time when beliefs cross
the adoption threshold conditional on current subjective beliefs.

To help provide intuition, we derive an approximation for the current market value MY
that is a function of E;[t**]. To do so, we start with an equation to define the two extreme
values in terms of expected book value and an expected continuous discount rate, or yield,

N,NA N,IA
of r; orr,”’

T
MM =E, [B ]exp( / rtN’]ds), jEe{NATA}.
t
Prior to adoption ¢**, when the adoption is still uncertain, we define ¥ as the constant

rate of expected return that equates expected discounted future book value to the current

market price so that MY = E, [B } exp( ftT rN ds). We then assume as an approximation

T E¢[t**] T
/ N ds = / N ds +/ A ds (3)
t t B [t**]

12



This approximates the uncertain adoption case by assuming that the current expected
return is equivalent to earning the “never adopt” expected return until the expected adoption
time, and then the “immediately adopt” expected return after that point. We then further

approximate this by

T E. [+ — ¢ T T — E, [+ T
Et{/t vads] z—t[T—]t /t riV’NAds—I——T_t[t ]/t N4 ds (4)
We then have that market to book in the uncertain adoption case is simply
MN MNA E [t**] —t MIA T_—FE [t**]
log [ &k | =1 L d 1 : = 5
°g<BzV> oo (T ) o s () T )

This equation, which we confirm works extremely well in approximating the true market
value in both the endogenous and exogenous case, gives an intuitive result. The current log
price of the new-economy stock is a weighted average of the immediate-adopt and never-
adopt scenarios, where the weight on the immediate-adopt scenario is the portion of the
remaining time to 1" that is expected to occur after adoption.

We then use the fact that the difference in logs between the two extreme M/B ratio cases

18

log(M"N4) —log(MM4) = Ay(7)*y67

And rewrite this approximation as

MY M4 B, [t*] — ¢
log [ =& | ~ 1 ! : Ao (7)*y67 6

The insight here is that the market price of the new economy has a discount-rate term

that is linear in the expected adoption time. This in turn means that, to create a large
discount-rate effect, a shock must create a large change in the expected time remaining until

a technology is adopted. This approximation also allows for a pure decomposition of the

13



cash-flow and discount rate effects of a shock to new-economy productivity.

Stock Price Response to Productivity Shocks. Now consider the effect of a positive
shock dZLt > 0, which represents good news about the new technology’s productivity growth
zﬂt and productivity pY. This shock has two opposing effects:

Cash-Flow Effect (positive): Shocks to productivity raise the value of MtN’IA by increasing

the expected terminal wealth of the new economy

N,JA 7 N
QM08 @ T7) _ 1) 20 4 a4y 22 5 g (7)
AR Az Az

A positive unexpected productivity shock increases both p¥ and 1@/ and therefore increases
expected terminal book value, raising the price level M (and M4 equally as well).

Discount-Rate Effect (negative): From the approximation above:

Ee[t**]—t S ~
0 (%&(7)27@3) _OE[t7) 01
dZ dy, dZ,, T —t

Ay(m)967 <0 (8)

Here the inequality holds since E,[t**] decreases with an increase in the subjective belief
about productivity. Therefore a positive shock to productivity decreases the stock price

through the increased discount rate driven by an earlier adoption time. The relative size

O [t**]
diy

endogenous case, this derivative is governed by the local slope of the adoption boundary )(t)

of this negative effect across the two model cases is entirely determined by . In the
given in Equation 2]
To understand why, suppose that 9/(t) is locally differentiable at time ¢. Linearizing the

boundary around ¢,

Ut +s) = o(t) +¥'(1) s,

and using that @ZA)t is locally a martingale, the expected remaining time to adoption admits

14



the first—order approximation

Differentiating with respect to the current belief then yields

O[] 1

o U(t)

Thus, the sensitivity of expected adoption time to changes in @t is inversely proportional
to the local time slope of the adoption threshold. A flat or nearly flat threshold implies
a large (in magnitude) response of E;[t**] to belief innovations, while a downward-sloping
threshold bounds this sensitivity and hence the discount-rate effect.

Note also that this approximation is effectively an upper bound on the sensitivity of the
expected adoption time to shocks to productivity shocks. In regions far from the boundary,
the expected adoption time will be nearly constant at 7', and in those regions, the derivative
will be near zero. As you rise into regions where adoption is possible, even with very low
probabilities, the discount rate effect will smoothly increase, and spread across the revolution
without generating a sudden decrease in prices.

This behavior stands in sharp contrast to the exogenous case. The simplifying assumption
of the exogenous stopping time effectively evaluates 1&5 against a fixed threshold v when
close to the fixed time ¢**. When adoption is evaluated against a fixed hurdle, the expected
adoption time exhibits a highly nonlinear dependence on beliefs: Far from the threshold,
small innovations to @Z;t have essentially no effect on E;[t**], as adoption is unlikely to occur
within the relevant horizon. However, as 1&,5 approaches the hurdle, the sensitivity of E,[t**] to
belief shocks rises sharply. In the limit, there is an arbitrarily large response to infinitesimal
belief innovations near the threshold just prior to ¢**.

This pattern, where discount rates are insensitive to productivity far from the threshold,

when adoption is unlikely, and then extremely sensitive near the boundary, is precisely what

15



generates the bubble pattern in the exogenous case.

In the endogenous case, the downward sloping adoption boundary comes from the struc-
ture of Equation [2, where there are three terms. The latter two terms tend to generate a
downward slope as both the continuation option and the variance penalty are decreasing
in time (892—?) < 0and 2 (1(y —1)Ay(7)6?) < 0). This is both due to the terminal period
nearing and 67 falling with the passage of time.

The first term generates an upward slope in the threshold with % (—ﬁ) > 0. This
is due to the “use it or lose it” nature of adoption due to the destruction of capital when
x> 0. You must adopt early enough to reap the benefits of increased production before the
terminal period to offset the high up-front cost. However, note that this is an artifact of the
finite-horizon setup with terminal wealth, as it operates through the As(7) term. In contrast,
the two channels through which falling 62 generates the negative slope, 1) the reduction of
uncertainty associated with adoption, and 2) the reduction of the value of the continuation
option, are fundamental to the learning aspect of the modelm

Since learning induces a downward-sloping adoption boundary through the gradual re-
duction of uncertainty, the endogenous model spreads the discount rate effect smoothly over
time and eliminates the bubble pattern present in the exogenous case.

Figure [2| visualizes how this effect plays out across the two model cases in the baseline
calibration of the model in PV. The four plots of Figure [2] each correspond to a different
time ¢ in the baseline calibration presented in PV.

In each plot, old economy productivity is at its unconditional mean. The x-axis is the
difference between the productivity of the new economy at and the mean productivity of
the old economy at time t. Moving right on the x-axis increases new economy productivity,
which directly impacts the M/B ratio and also determine the subjective Uy

AN IA

The gray band in the plots show the range between log( v ) on the bottom and
t

N,NA
log (MjBN ) on the top, which the true M/B for both specifications will lie between. The

"We verify that the endogenous case with a high s can generate regions in which rising productivity
generates falling prices.
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true M /B for the endogenous adoption time specification is given by the blue line and the
exogenous specification by the orange line. In the smaller plots beneath, the expected time
to adoption is given for both casesﬁ Finally, the dashed lines in the main plot show the
approximation of true M/B given by Equation @, which works very well for both cases.
The orange vertical line on the two plots shows the median level of productivity at time ¢
conditional on an adoption occurring in the exogenous specification.

In Panel A, it is early in the revolution at ¢ = 1.5, and for most revolutions, py; is only
slightly positive due to the short history. In both specifications, the expected adoption time
is close to the terminal period 7" = 30, so small shocks to py; move M/B along the upper
boundary of the gray band, with only the cash-flow effect operating. At this stage, expected
adoption time responds smoothly to changes in productivity in both cases.

Further along in the revolution at ¢ = 5, shown in Panel B, typical productivity condi-
tional on a revolution lies in a region where, in the exogenous case, E;[t**] responds sharply
to productivity changes. Increases to productivity, and the corresponding increase to subjec-
tive beliefs @t, near the adoption threshold substantially increase the probability of adopting
soon (in roughly three years) rather than never adopting (effectively in 25 years at 7' = 30).
As a result, rising productivity lowers E,[t**] rapidly enough that the discount-rate effect
dominates, and returns respond negatively to positive cash-flow shocks. This effect intensi-
fies in the final panels, when t = 7 and ¢ = 7.5. As the exogenous threshold approaches, the
positive productivity shocks required for adoption cause stock prices fall sharply, and the
bubble bursts.

In contrast, for the endogenous case (blue lines), E,[t**] responds smoothly to produc-
tivity shocks throughout the revolution. Expected adoption times move steadily closer with

successive positive shocks, spreading the discount-rate effect over time. Without the exogo-

8Expected adoption times are computed by approximating posterior beliefs as a Gaussian diffusion with
deterministically declining variance due to learning, and integrating the implied first-passage probabilities to
the PDE-implied adoption boundary (with non-adoption mapped to the terminal horizon). The true M/B
ratios for the new economy are computed by numerically solving PDEs in a manner similar to the replication
code provided by PV.
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neous adoption date to force a concentrated discount-rate shock, a bubble pattern does not
arise.

To show that this effect is more general across reasonable parameters. Figure|3[shows the
cumulative unexpected returns for parameter permutations of the most important discount
rate parameters (on1,7,k,¢). This is analogous to the unexpected M/B paths for the
revolutions in the bottom two panels of Figure [1, with the exception that we focus on the
endogenous revolutions that occur in the two-year band around the median endogenous
adoption timesﬂ As the plot shows, for each specification, there is a clear bubble pattern in
the exogenous case, and this bubble pattern is notably more pronounced when risk aversion
is high. However, even in high risk-aversion calibrations, there is no bubble pattern in any
of the endogenous adoption time cases.

While we argue above that the lack of a bubble in the endogenous adoption time case is
a general feature of learning models, it may be the case that a bubble conditional on adop-
tion could be obtained through other specifications. We therefore also present an empirical

argument regarding the mechanism of PV.

4 Earnings and stock prices during the DotCom Bub-

ble and AI Boom

We now turn to an empirical test of the mechanism in PV. The central prediction of the
model is not simply that stock prices rise and then fall during technological revolutions, but
that at some point positive cash-flow news becomes negative stock-return news. Intuitively,
sufficiently strong cash-flow realizations accelerate the expected adoption of the new tech-
nology, raising risk and discount rates enough to offset higher expected profitability. As a

result, the model predicts that prices fall even as earnings expectations improve: positive

9For parameterizations with vary few exogenous adoptions after eight years, we move the exogenous
adoption time to t** to 12 years and then 16 years to get enough adoptions. This occurs in all panels in the
bottom row.
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Figure 2: Expected adoption times and new economy stock market prices.
Each panel shows new economy M/B (larger plots) and expected time to adoption E[t**]
(smaller plots underneath) as a function of the productivity of the new economy relative to
the old economy at a given time ¢ in the model. Old economy productivity is assumed to be
at its unconditional mean. The gray band shows the range between two extremes of M/B,

N,NA
where the upper boundary of the band is log (MtB—N>, or the M /B ratio of the new economy
t

s

if it can never be adopted (even optimally), and the lower boundary is log (MJEN ) is the
M/B ratio if it were immediately adopted (even sub-optimally). The blue lines show the
true (solid) and approximate (dashed) M/B ratio, and the orange lines show the true and

approximate M /B when adoption is an all-or-nothing decision that occurs at the exogenous

_ N,IA %
time E[t**] = 8. The approximation is log (g—ﬁ) ~ log (MEN ) + (%) Ay(7)?v67. The
t t

vertical orange line shows the median relative productivity at a given time conditional on
an adoption in the exogenous case.

19



Case 1] 0n,1=0.05, y=2, k=0, $=0.3 Case 2 | 05,1=0.05, y=2, k=0, $=0.45 Case 3| 0,1=0.05, y=2, k=0.15, =03 Case 4| 05,1=0.05, y=2, k=0.15, $=0.45
0.7 074
£ 0.4 12
2061 0.6
] L0 f
° 054 ]
Bos i 034 i 05
g N 0.8 i ~
g 041 i N 041 H
E S ez 0.6 / : ]
5 034 | 034
H H H H H
2 024 0.4 ]
502 ] 014 i | 02 H
5 0.1 H ; 02 / ; o ;
0.0 7 i 0.0 i 0.0 + 004 =7 +
-12 -10 -8 -6 -4 -2 0 -10 -8 -6 -4 -2 0 -10 -8 -6 -4 -2 o -8 -6 -4 -2 0
Case 5 | 0,,1=0.05, y=6, k=0, $=0.3 Case 6 | 0,1=0.05, y=6, k=0, $=0.45 Case 7| 0,1=0.05, y=6, k=0.15, $=0.3 Case 8 | 0,1=0.05, y=6, k=0.15, $=0.45
0.4 25 0.8
£ 10
€10 074
e 0.3 2.0
< 08 0.6 1
g {
g 024 15 054
g 061 ] il
H 0.4
5 | 0.1
o 0.4 T / 10 03
-
s H i H 024
2 021 1 oo 05 i
3 01
] -0.14
00 ! H 0.0 | 0.0
-20 -15 -10 -5 0 -17.5-15.0 125 -10.0 -7.5 5.0 -2.5 0.0 -17.5 -15.0 -125 -10.0 -7.5 -50 -2.5 00 -14 -12 -10 -8 -6 -4 -2 0
Case 9| 07,1=0.09, y=2, k=0, $=0.3 Case 10 | 0,,1=0.09, y=2, k=0, $=0.45 Case 11 0,,1=0.09, y=2, k=0.15, $=0.3 Case 12 | 0,,1=0.09, y=2, k=0.15, $=0.45
r 2.00
2.00 Lo
3 5 175
35175 08
B ] 8 ] {
3 150 4 150
g 125 _\ 0.6 \ s 125 H
% 100 | H 100 H
3 B H 0.4 H 075
g 075 H H 2 H
5 4 H { { 0.50 1 H
E 0.50 0.2+ 1
S 025 / H / i i | 0254 H
3 H H H H
0,001 i 0.0 0 i | o004 +
-17.5 -15.0 125 -10.0 7.5 -5.0 -25 00 -4 -12 -10 -8 -6 -4 -2 0 -4 -12 -10 -8 -6 -4 -2 o -12 -10 -8 -6 -4 -2 0
Case 13| 07,1=0.09, y=6, k=0, $=0.3 Case 14 | 05,1=0.09, y=6, k=0, $=0.45 Case 15 | 05,1=0.09, y=6, £=0.15, $=0.3 Case 16 | 05,1=0.09, y=6, £=0.15, $=0.45
14
54 ]
£ 124 20
2 : :
4 104 ]
9 3
2 15 N :
g5l 0.8 A / i L !
H H / N / H
s 0.6 10 ,
© 21 i H
3 | 044 N i
314 i 5 i
E? H 02 / H
3 i i
0 = 1 0.0 0 04 1
0

-15 -10
Event time T (years)

-25 -20

-5

-15 -10 -5 0

Event time T (years)

-20

—— Exogenous Adoption Time

~20.0-17.5-15.0 -12.5-10.0 -7.5 50 -2.5 0.0

Event time T (years)

Endogenous Adoption Time

-17.5 -15.0 -125-10.0 7.5 5.0 -25 0.0
Event time T (years)

Figure 3: Cumulative unexpected returns in revolutions across parameterizations
Each panel shows new economy cumulative unexpected returns conditional on a technical
revolution in the endogenous and exogenous specification for a given set of parameters. Ex-
ogenous adoptions occur at time t** = 8. For the endogenous adoption time specification
we show adoptions in the two year band around the median adoption occurrence. The 16
panels represent the 16 possible combinations of parameters (x € (0,0.15),v € (2,6),0n,1 €
(0.5,0.9),¢ € (0.3,0.45)), with remaining parameters set as in the baseline calibration of
Pastor and Veronesi| (2009)). For parameter combinations where very few exogenous adop-
tions occur after eight years, we move the exogenous adoption decision to year 12 or 16 to
generate enough exogenous adoptions.
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cash-flow shocks themselves pop the bubble.

To evaluate this implication, Figure [4] compares the joint evolution of earnings measures
and stock prices during the DotCom Bubble of the late 1990s and the recent AI boom
beginning in late 2022.

For the DotCom episode, we follow PV and compare the NASDAQ and the Dow Jones
Industrial Average (DJIA), focusing on the top 100 NASDAQ firms by market capitalization
at the start of the period and the 30 DJIA constituents.m For the AI boom, we compare
the DJIA to firms in the VanEck Semiconductor ETF (SMH), which we use as a proxy for
exposure to the build-out of AI infrastructure. Stock price indices for the NASDAQ, DJIA,
and SMH are plotted alongside earnings measures and normalized to 100.

To proxy for productivity and expected cash flows in the model, we use two measures.
The first is forecast earnings scaled by book equity (BE). As PV note, this measure of return-
on-equity (ROE) corresponds directly to productivity in the model, and ROE is also used as
a proxy for cash-flow shocks in the broader literature (e.g., Vuolteenaho| (2002))). To proxy
for the growth parameter lﬁt, we use forecast earnings growth.

Both measures are constructed using IBES consensus mean earnings-per-share forecasts
for the next two fiscal years (FY1 and FY2). Aggregate forecast earnings levels are computed
as a weighted average of FY1 and FY2 forecasts, scaled by shares outstanding and total book
equity. Forecast earnings growth is defined as FY2/FY1 — 1 and aggregated across firms using
FY1 earnings weights. All series are normalized to 100 at the start of each sample window.

The DotCom Bubble is shown in the top row. Stock prices exhibit the familiar boom—bust
pattern, with NASDAQ prices rising sharply through 1999 and early 2000 before collapsing.
The left panel show that this collapse was accompanied by declining earnings expectations,
rather than rising cash-flow prospects, a pattern inconsistent with the discount-rate mecha-

nism emphasized in PVE-] The right panel shows little evidence that either the boom or the

10We use the top 100 firms to create a stable panel; the results are qualitatively unchanged using the full
NASDAQ universe.

1We verify that realized aggregate earnings closely track one-year-ahead IBES forecasts. This pattern is
also highlighted in recent work by |Gémez-Cram and Lawrence| (2025) who shows that realized earnings of
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collapse was driven by changing earnings growth expectations.

The bottom row shows the recent Al boom. Beginning in 2023, AI stock prices rise
alongside expected earnings and, unlike the DotCom episode, alongside rising growth expec-
tations. Earnings growth expectations in particular closely track Al stock prices.

Given that adoption of Al appears likely but still highly uncertain, this positive associa-
tion between cash flows and prices is at odds with the mechanism in PV, as this is precisely
the period when the discount-rate channel should be most active[?]

Taken together, neither episode displays the negative relation between stock prices and
cash-flow expectations that is central to the bubble mechanism in the exogenous adoption

model of PV.

5 Conclusion

In this paper, we examine the mechanism proposed in Pastor and Veronesi (2009) for ex-
plaining ex post stock price bubbles associated with transformative technologies. We show
that the model calibration in Pastor and Veronesi| (2009) only produces a stock price bubble
in the illustrative case with the simplifying assumption of an all-or-nothing adoption decision
at an exogenous point in time. In the more realistic case of an endogenous optimal adoption
time, the baseline calibration yields no stock price bubble.

We show that this difference is due to the structure of the two specifications. To do so,
we derive a simple approximation for stock prices in the model that applies to both, and use
it show that the bubble pattern arises as a result of the simplifying assumption, and is not
a natural feature of a learning model with an endogenous adoption time.

This result has implications for the current Al stock price boom. Given that the adoption
of Al into the broader economy is well underway, it is likely the case that beliefs about

systematic risk are changing as expectations for Al’s usefulness adjust. This is precisely the

software firms relative to expectations were positive and then negative during the rise and fall of the Nasdaq.
2For instance, 90% of S&P 500 firms mentioned Al in their 2024 10-K filings, compared to only 25% in
2023.
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time that the discount-rate channel should be most active according to the exogenous model,
with cash-flow shocks and prices moving in opposite directions. However, we find empirically
that beliefs about future cash-flows, as proxied by analyst forecasts of earnings, appear to
be comoving positively with prices of Al stocks.

This pattern is consistent with each bit of news about the usefulness of AI producing
incremental changes in the discount rate that attenuate, but do not overwhelm, the price
impacts from cash-flow shocks, as the exogenous adoption time model predicts.Good cash-
flow news is good stock price news for Al firms. If the bubble does in fact burst, it will be

caused by some other mechanism than that proposed by [Pastor and Veronesi (2009).
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Figure 4: Earnings and stock prices during the DotCom Bubble and AI Boom.
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